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•  As we have seen, ML algorithms use data to develop predictive 
models.

•  Before using such algorithms, the developer has to follow the 
ETL process that consist on Extracting information from reliable 
sources, Transform such information so that it is usable and 
Load the information in the system that we will use to feed the 
algorithm.

•  Many researchers suggest that the ELT process consumes more 
than 80% of the developing time in a ML project.
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•  Regarding Extraction and Loading, there is a number of 
solutions that can be employed to manage the massive amount 
of data that characterize ML applications, examples of such 
commercial solutions/systems/technologies are Hadoop, Hive, 
Spark, AWS, etc.
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•  Regarding data Transformation or processing, the task is highly 
application-dependent and requires a considerable effort of the 
developer.

•  ML algorithms can, theoretically, find hidden patterns in raw 
data, this means that, in principle, it is not necessary to 
transform data to make it accesible.

•  Nevertheless, as humans, machine learning algorithms may 
process more efficiently data with a particular representation, 
representation or pre-processing provides some “hint” to the 
algorithm facilitating in most of the cases the learning process.
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•  Note also that some features of the instances we may want to 
employ may not be numerical (e.g. labels) and so they can not 
be treated analytically in an efficient manner.

•  For example, think on the  the case of Amazon’s Mechanical 
Turk tasks:
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•  Finally, many algorithms require that the dimensionality of the 
input data is kept constant, for example, the same number of 
pixels in an image, so that raw data may need some sort of 
transformation. 

•  For these and other reasons, data pre-processing is an essential 
part of building ML models and it strongly conditions the result 
of the whole process.

Data quality is essential in ML since data is the 
raw material to build the models.
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•  As we mentioned, the attributes  in ML are called features, and 
they can be interpreted as propeties of the object (measurable 
or not) .

•  Usually it is required that features are independent (no 
relationship among them) and have discriminative power (so 
that they add something to the problem at hand) but even to 
detect such simple propertis in most of the cases is unfeasible.

•  For example, features may look pairwise independent but there 
can a a latent variable that may affect two aparently 
independent variables.

•  Also, some variable may seem not to have discriminative power 
but taken together with other variable its power may increase 
radically, e.g.   

Y = X
1
X

2
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•  Feature engineering is the area of ML that tries to obtain the 
best possible results from a predictive model  by transforming 
raw data into features that better represent the underlying 
problem to the predictive models.

•  Note that features can be properties directly observable (e.g. 
Birth date), must need to be estimated using a model or 
aparatus (temperature) or may be subjective.
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DATA INTUITION
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•  To detect whether data at hand is consistent, the first step is to 
have an intuitive view, visualization and descriptive statistics 
allow to understand the nature of data.

•  Regarding statistics, some useful statistical measures are the 
mean, the median (the central point of the distribution) and the 
mode (the most frequent value).

•  It is also relevant to evaluate some measures of spread such as 
the range (the distance between the maximum and minimum 
value), or the variance. 

4 8 3 5 6 9 2 3 1 mean 4.6
. . median 4

mode 3
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It can be also useful to analyse some measures of co-movement 
such as the correlation.

Another possibility is to use the Chi-square test for independence 
between the variables, 
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•  Nevertheless such statistics provide, in some cases, poor 
descripiptions of the data.

•  A paramount example is the Ascombe quartet, four data sets 
with nearly identical simple descriptive statistics but which are 
very different when plotted
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•  For this reason, when possible, it is generally useful to have an 
intuitive view of the data in the form of some kind of graphic.

•  The problem is that relationships between variables could be 
highly nonlinear, affected by noise and also have a high 
dimensionality making, in most of the cases, very difficult to 
produce such plots.

•  The range of possibilities that visualization offers is enormous,  it 
is a very active area of research which is producing many 
interesting results.
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•  Among the plots that can be used to have an intuitive view of 
the data probably the most bvious is the histogram which show 
show spread and peaky is the distribution and whether it is 
skewed.
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•  The whisker box plot is also very convenient to understand the 
variability between quartiles of the distribution. 



18	
  18	
  

•  Scatter plots give an intuition on the pairwise relationship 
between the variables at  hand:
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•  One problem of scatterplots is that they might be too dense, 
making it impossible to detect any pattern in the data.

•  An alternative is to employ 2D density plots which count the 
number of observations within a particular area of the 2D space. 
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•  Bubble plots extend two dimensions to a third by showing in a 
cartesian axes the third one using the size of the dots.

•  Data visualization and descriptive statistics are poweful tools  
that may be helpful in understanding the data at hand and 
diagnosing problems with it. 
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DATA PRE-PROCESSING 
AND FEATURE ENGINEERING
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•  An intuitive view of data is not enough to build successful ML 
applications.

•  There are a number of issues that need to be addressed so that 
we can be sure that data will ease the process of model 
construction, in particular we have to consider problems related 
to:

•  Missing Data

•  Transforming Data

•  Data Representation

•  Incomplete Data

•  Imbalanced Data 

•  Data Reduction
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•  Missing data happens when one or more features of some 
particular example are not available. 

•  This can be due for several reasons and each one of them needs 
to be properly addressed:

•  The data exists but it is unknown:  for example, for an 
individual we might not know her birthday

•  We do not know whether the data exist or not: for example 
in “floor” we do not know whether the individual resides in 
a flat or in a house, so we do not know if the attribute is 
appliable

•  Missing data has different consequences depending on the 
algorithm applied, in some cases the algorithm may perfectly 
handle missing data (some decision trees, for example) while in 
some other cases the data must be completed so that the 
algorithm works (linear models, for example).
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•  Missing data are commonly referred as:

•  Missing Completely at Random (MCAR): Missed data are 
completely random, there is no relationship between 
whether a data point is missing and any values in the data 
set, missing or observed.

•  Missing at Random (MAR): the cause of the missing data is 
unrelated to the missing values but may be related to the 
observed values of other variables 

•  Missing not at Random (MNAR): Missing value depends on 
the hypothetical value of the variable .
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•  To deal with missing data one may employ a number of 
alternatives.

•  The most drastic one is to completely eliminate the example 
that has one or more uncomplete features (listwise deletion).

•  This alternative may be reasonable when there is plenty of data 
but in most of the cases it is not feasible.

•  Moreover, the loss of some characteristics may reveal problems 
in data acquisition and the elimination of such examples may 
induce a bias in data.

ATTRIBUTE 1 ATTRIBUTE 2 ATTRIBUTE 3 ATTRIBUTE 4 ATTRIBUTE 5
pattern A 1 4 3 0 2
pattern B 4 6 na 1 2
pattern C 7 6 na 1 2
pattern D 1 5 3 6 8
pattern E 8 3 7 1 2
pattern F 1 6 na 2 2

X



26	
  

•  Another alternative is to eliminate the feature that has too many 
missing values, this is called dropping features:

•  Note that this alternative it is also very dramatic since the 
feature eliminated may have a hgh predictive value on the 
dependent variable.

ATTRIBUTE 1 ATTRIBUTE 2 ATTRIBUTE 3 ATTRIBUTE 4 ATTRIBUTE 5
pattern A 1 4 3 0 2
pattern B 4 6 na 1 2
pattern C 7 6 na 1 2
pattern D 1 5 3 6 8
pattern E 8 3 7 1 2
pattern F 1 6 na 2 2

X
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•  The third possibility is to replace the value of the missing 
attribute by some estimate of the “expected” value of the 
variable, this procedure is called data imputation.

•  “Expected” has, in general, no clear interpretation, for example 
we could employ the mean, the median or the mode or even 
the value that is more common for similar patterns.

  X
  ATTRIBUTE 1 ATTRIBUTE 2 ATTRIBUTE 3 ATTRIBUTE 4 ATTRIBUTE 5
pattern A 1 4 3 0 2
pattern B 4 4 na 1 2
pattern C 5 4 2 1 2
pattern D 1 5 3 6 8
pattern E 8 3 7 1 2
pattern F 1 6 4 2 2

Mode 3

Mean 3.8

Closest   (pattern C) 2
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•  More sophisticated methods can be also applied, for example, 
ome may try to adjust a linear model using the missing 
characteristic as the independet variable and use examples taht 
are complete to perform the regresion and then yo use the 
estimated coefficients to forecats the value of the missing 
variable: 

•  In the case of time series, there is a diversity of methods that 
can be employed, the simplest ones are simply using the last 
data point:

•  Or an interpolation, e.g.

•  Or a more sophisticated method such as estimating a model to 
predict the unknown value using the existig ones.
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•  Transforming data refers to the process of modifying data to 
make it more adequate for our machine learning algorithms.

•  It involves a number of possible modifications of raw data or 
even the elimination of examples or features that may distort 
the process of finding hidden patterns in the data.

•  This process is also called cleaning data.
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•  In Statistics it is very common to employ variables which follow a  
normal distribution N(μ,σ) and to transform it to a standardized 
N(0,1) distribution:

•  This is done because the statistical properties of the 
standardized normal distribution are very well known and one 
may calculate statistics with a known distribution.

•  Such standardization (and others) is also commonly applied in 
Machine Learning, even though the purposes are not inferential 
but more of a practical nature.

X ' = X − µ
σ

≈N(0,1)
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•  Since variables may be quite different expressed in very 
different scales this might affect the learning process, note that 
even in trivial models such a multinomial model

•  The parameters β may have very different scale, so that e.g. a 
randomization on the interval [0,1] for β1 could be innapropriate 
for βn if it moves on e.g. [100.000,200.000]. 

•  Another possibility is to employ

Y =α + β
1
X

1
+ β

2
X

2
+ ...+ β

n
X

n

X ' = X −min(X )
max(X )−min(X )

∈[0,1]
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•  The next figure provides some intuition of the normalization 
process 

β1	
  

β2	
  

β1	
  

β2	
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•  For some ML algorithms it is particularly relevant to check for 
abnormal observations, it is almost impossible to define what 
does it mean “abnormal”: observations may appear different, 
may be different or, simply, may be caused by errors collecting 
the data (“fat finger” problems).

•  One property of the normal distribution is that between the 
mean and 2 times the standard deviation we can find 95% of the 
observations
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•  An outlier is “an observation which deviates so much from the 
other observations as to arouse suspicions that it was generated 
by a different statistical mechanism” (Hawkins, 1980).

•  One possibility is to consider that an abnormal oservation is one 
that is “extremelly rare” (e.g. 5%) and then to truncate variables 
which are far apart from the “normal” behavior, e.g.

x =
min(x,µ + 2σ ), if x > 0

max(x,µ − 2σ ), if x ≤ 0

⎧
⎨
⎪

⎩⎪



35	
  

outlier.ipynb
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•  Another possibility is simply to calculate the z-score of the 
observations:

•  And then to eliminate observations which have e.g. Z-score 
higher than 3, 4…

•  Finally one may use more sophisticated methods such as 
Isolation Forests, Density-based spatial clustering of 
applications with noise (DBSCAN), Local Outlier Factor (LOF) 
score, etc.

z − score = X − µ
σ
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•  Data representation refers to the procedure on finding the 
optimal alphabet to  express the data so that it is adequate for 
the machine learning algorithm at hand.

•  In some cases data representation is relatively clear, for 
example, in regression models it seems obvious to use real 
numbers.

•  Nevertheless, in most of the cases, the decision is not  trivial, 
assume that we have one fature that represents four classes A,B, 
C,D
•  One possibility is to consider them ordered and to use e.g. 

{1,2,3,4}.

•  Another possibility is to consider them un-ordered and use 
a binary representation e.g. {00,01,10,11}.

•  Finally we can consider the relative distance among the 
classes, considering real numbers e.g. {1,1.5,2.5,4}.
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•  In the case of categorical data  where ordering has no sense, one 
possibility is to employ one hot encoding, that simply consists on 
creating “dummy” binary variable with the same number of bits as 
the number of classes in the original dataset, e.g.

•  4 classes: A, B, C D

•  7 classes: A, B, C, D, E, F, G

A 1 0 0 0
B 0 1 0 0
C 0 0 1 0
D 0 0 0 1

A 1 0 0 0 0 0 0
B 0 1 0 0 0 0 0
C 0 0 1 0 0 0 0
D 0 0 0 1 0 0 0
E 0 0 0 0 1 0 0
F 0 0 0 0 0 1 0
G 0 0 0 0 0 0 1
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•  Incomplete data is somewhat different to missing data, in this 
case we refer to the fact that some data might be simply non 
existent and must be created ‘ad-hoc’, for example using 
simulated data.

•  Simulated Data refers to the observations that are created 
artificially to complete a data set or even as to be used as the  
single database.

•  In many cases, simulated data is the only alternative when data 
is non-existent or scarce and there exists a model for data 
creation.

•  For example, let us assume that we are building a ML algorithm 
and one of the inputs is the arrival of orders to some hub, 
assume that orders arrive randomly following a  discrete random 
walk:

O
t
=O

t−1
+η

t
,η

t
≈N(0,1)
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•  Assume that we need many examples of the evolution of the 
process for the first 1000 observations starting   at O1=0, we could 
simply employ the known model to generate such data and then 
employ it as an input to our algorithm.

•  This is also the basis of Montecarlo methods which are widely 
employed in ML to evaluate alternative algorithms, to measure the 
sensitivity against features and many other applications besides 
data generation. 
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•  Imbalanced Data refers to the problem that some data 
examples might be underrepresented in the database.

•  This intrinsecally induces a bias in the learning algorithm which 
will  pay more attention to the data that it is over represented.

•  As an example, assume that some database includes two 
classes, class A with 95% of the examples and class B with 5% of 
the remaining ones.

•  A “lazy” classifier may predict just class A and still attain a 95% 
of accuracy giving the wrong impression of an excellent 
behavior.

•  The problem of imbalanced data is extremelly common in ML, 
not only in classification problems but also in regression, for 
example when we record returns of some stock most of the 
observations are close to zero so the model is naturally biased 
not to consider extreme observations.
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•  Imbalanced data must be treated properly if one wants to avoid 
biases in data which are frequently incorrectly labeled as 
“algorithmic biases”.

•  When the database is imbalanced we may adopt four strategies:

•  Oversample the under-represented class by e.g.  
duplicating observations until the dataset is balanced

•  Undersample the over-represented class by removing 
observations until the dataset is balanced

•  Create data synthetically, in a similar manner as we 
mentioned before

•  Modify the cost function, giving more weight to the class/
data that it is under represented
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•  Regarding data creation for imbalanced data, one popular 
algorithm is SMOTE (Synthetic Minority Oversampling 
Technique) which follows the steps:

1.  For each example from a minority set, choose the k  
nearest neighbors

2.  Select randomly one instance from the nearest neighbors
3.  Create a new instance with features as a convex 

combination of the features of the original instance and 
the nearest neighbor 
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•  The synthetic observation is created as

where λ is a random number in [0,1]. 

•  A very similar technique is called ﻿adaptive synthetic sampling 
method (ADASYN). 

•  ﻿In ADASYN, the number of synthetic examples generated is 
proportional to the number of examples in the group of 
neigbors which are not from the minority class. 

•  Note that in this case more synthetic examples are generated in 
the area where the examples of the minority class are rare.  

x
i
' = x

i
+ λ(x

j
− x

i
)



45	
  

•  Each one of these alternatives have its drawbacks:

•  Oversample may lead to overfitting 

•  Undersample leads to the sample reduction

•  Synthetic data may have low quality or may difficult to 
replicate

•  Modified cost functions it is difficult to calibrate it and the 
learning algorithm needs to be re-written.
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•  Data reduction refers to the procedure os “compressing” 
features to reduce the complexity of the problem.

•  Compressing can be interpreted in two ways: first, we may 
eliminate some features that may not have predictive power, in 
such case we properly talk about feature selection.

•  In other cases, we may think that the granualrity of the problem 
is too high and we may be interested in combining attributes to 
create new (fewer) ones, in this case we say we are performing  
dimensionality reduction.

•  Notice that, in both cases, the effectve number of features is 
reduced so that  the complexity of the problem wil be also 
reduced, making it more easy to build and depurate ML 
models.
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•  Regarding complexity reduction a well known principle in Science 
is the Occams’s razor that argues that among competing 
hypotheses the one with the fewest assumptions is probably the 
most correct.

•  In the context of model building this means that models with 
fewer parameters and features may provide better explanations of 
data and also better forecasts.
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•  The process of feature selection can be done under several 
approaches.

•  In the first place, we can make a distinction depending on the 
choice of the method to eliminate unuseful features, in this case, 
we can distinguish among:

•  filtering methods: try to eliminate ex-ante redundant or 
unuseful attributes

•  wrapper methods: consider feature selection as a search 
problem 

•  regularization methods: directly interviene on the model to 
make it to discard low value features.



49	
  

•  In the second place, the choice of features can be:

•  incremental: adding one more feature to the model so that 
the performance increases most

•  decremental: removing the feature that degrades less the 
performace of the model.

•  Notice that, in fact, the underlying model is modified and the 
effective number of parameters an model complexity are changed.



LOSS AND PERFORMANCE MEASURES
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•  As we have seen, the definition of Machine Learning involves 
some idea of improving some particular measure when 
performing a task.

•  This measure must be well defined, easy to compute and 
understandable, moreover, it should be consistent with the 
algorithm employed to improve it so that learning efficiently 
takes place.

•   Such measure is called the loss

•  The choice of the loss function is crucial when developing any 
ML application: a poor choice of the loss will lead to a poor 
model, even when data is good and sufficient.
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•   Generically we can define the problem of learning as

•  Which is: finding the optimal parameters so that the loss 
computed as the “distance” between the predicted value and 
the real one is minimized.

•  As we see, learning can be formally defined in this way and so 
the queality of learning crucially depends on the choice of the 
loss function.

•  Notice that parameters W will be optimal only under such loss, 
so that it needs to be consistent with the problem at hand.

•  There must must be also possible to optimize the loss function 
in an efficient way. 

min
W
L(W ,X ) = 1

n
L(f (W ,x

i
),y

i
)

i=1

n

∑
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•  After a model has been built, some other measure or measures 
can be employed to evaluate it, such measures are called 
performance measures (also metrics).

•  Performance measures need not to be the same as loss 
functions employed when building the algorithm.

•  Note that, in principle, this is somehow an inconsistency since 
the model is optimized using a function and then evaluated 
using another one.

•  This is done for several reasons: 

1.  In the first place, loss and performance functions can be 
closely related, the most obvious situation is the mae and 
the mse when there are no big discrepancies in the scale of 
data, to the extent that errors are small one measure will 
lead to similar results than the other so performance and 
loss will be consistent.
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2.  In second place, very efficient algorithms exist for 
particular loss functions (for example, the backpropagation 
algorithm, to minimize the mse) 

•  These algorithms may not exist or it may be costly to devise 
them  for arbitrary performance functions.

3.  In the third case, performance functions may be some sort 
of statistical tests that can be used to e.g. compare 
alternative models.

∇
W
L(W ,X )
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4.  Finally, using a performance function different to the loss 
function may avoid some overfitting problems, in some 
cases the models successfully “exploits” properties of the 
performance function allowing to be be close, in some 
statistical sense, but far away in a geometrical sense 
(remember the Ascombe quartet, for example).

•  The use of different performance/loss functions is still an area of 
debate beween theorists and practitioners
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•  Regarding loss functions, for example, when we introduced 
linear models in regression we mentioned that the forecasts can 
be evaluated using the mean squared error, 

•  Up to now, we have used a compact notation to simplify, but 
notice that in reality what we want to do (in the preceeding 
case) is to compute the m.s.e. along all the observations y1, y2,…
yn, that is:

 

m.s.e. = g(Y ,Ŷ ) = (Y − Ŷ )2

m.s.e. = g(Y ,Ŷ ) = 1
n

(y
i
− ŷ

i
)2

i=1

n

∑
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•  As mentioned, in this setting, learning can now be interpreted 
as the process to minimize some loss, that is, to find the optimal 
parameters β1,  β2,…,  βn  so that (e.g.) the  m.s.e. error is 
minimized, i.e.

 

 

min
β 0,β1,β 2,...βn

g(Y ,Ŷ
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•  Notice that the mse has a number of characteristics that are not 
apparent but must be taken into account, for example:

•  The mse will be biased if some forecast is particularly bad

•  The mse is expressed in squared units, not in the same units 
of the variable we want to forecast

•  The mse is sensible to the units measure

•  The mse does not consider proportionality 4 is double than 
2 and 8 double than 4 but in the first case the mse is 4 and 
in the second case 16

•  This, among other reasons, make the mse not a perfect loss in 
any situation.
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•  The ubiquity of the mse in many ML applications is due to the 
fact that there exists efficient learning algorithms since, as 
mentioned, many of them use gradient descent.

•  Nevertheless, in other settings, we may preffer to employ other 
measures.

•  For example we might employ the root mean squared error 
(rmse) which corrects the effect of using squared units:

•  Or the mean absolute error (mae) that penalize equally along 
the range of Y

r.m.s.e. = g(Y ,Ŷ ) = 1
n

(y
i
− ŷ

i
)2

i=1

n

∑

m.a.e. = g(Y ,Ŷ ) = 1
n

y
i
− ŷ

i
i=1

n

∑



60	
  

•  A generalization to both the mse and the mae is the lk norm:

•  Note thak for k=1 we have the mae and for k=2 the mse.

•  The higher the norm index (k) the more it weights large 
deviations and the less it concentrates on small deviations.

•  To demonstrate the sensitivity of these measures against 
outliers you can run  measures.ipynb.

•  Finally, it is common to express the error in percentual terms, in 
such case we can employ the mean absolute percentage error:

  

ℓ
k
= g(Y ,Ŷ ) = 1

n
y
i
− ŷ

i
i=1

n

∑
k

m.a.p.e. = g(Y ,Ŷ ) =
y
i
− ŷ

i

y
ii=1

n

∑
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•  In the case of binary classification, measures such as the mse do 
not seem to conform with the target we want to attain which is 
to minimize the number of misclassifications.

•  The cross-entropy has been proposed as an approppriate loss 
function in the case of binary classification:

c.e. = −y
i
log( ŷ

i
)

i=1

n

∑ − (1− y
i
)log(1− ŷ

i
)
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•  Notice that

y
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= 0, ŷ
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i
)− (1− y

i
)log(1− ŷ
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i
= 0⇒ −y

i
log( ŷ
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•  So, the value of cross-entropy goes to zero, in case all the 
predictions are correct and approaches infinity when the 
predictions are wrong.

•  An alternative to cross-entropy, in binary classification is the 
hinge loss function

•  In the case of multiple classes, the cross entropy can be also 
extended to:

c.e. = −(yC

i
)log( ŷ

i
C
i
)

i=1

n

∑
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K

∑

h.l. =max(0,1− y
i
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i
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i
, ŷ
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∈ −1,1{ }
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•  Regarding performance functions, in the case of regression, we 
can use some statistic such as the R-squared:

•  The R-squared measures what fraction of the variation of the 
dependent variable is explained by the model.

•  Good models have a high value of the R-squared (close to one), 
and bad models have a low value (close to zero).

R2 =
(y

i
− y )2

i=1

n

∑ − (y
i
− ŷ

i
)2
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n

∑
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n

∑
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•  In the case of binary classification (e.g. Y={0,1}, Y={-1,1}) one of 
the most employed performance measures is the confusion 
matrix.

•  It simply records the number of times  that the model correctly 
predicts class 0, the number of times that the model correctly 
predicts class 1 and the errors when predicting each of the 
classes.

•  Calling 1 to the “positive” class and 0 to the “negative” class 
we have

•  Notice that correct predictions (in green) are located in the main 
diagonal while wrong predictions or errors (in red) in the inverse 
diagonal of the table.

  

Positive Negative
Positive True%Positive%(TP) False%Positive%(FP)
Negative False%Negative%(FN) True%Negative%(TN)

PREDICTION

REAL
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•  The different terms used in a confusion matrix are the following: 

•  True Positive (TP): These are the cases in which we predicted 
class “positive” and in fact the class was “positive”.

•  True Negative (TN): These are the cases in which we 
predicted class “negative” and in fact the class was 
“positive”.

•  False Positive (FP): We predicted class “positive” but the 
class was “negative”.

•  False Negative (FN): We predicted class “negative” but the 
class was “positive”.
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•  One measure of the overall accuracy of the algorithm is:

 

•  The misclassification rate  measures how often the algorithm 
made a wrong prediction, it is simply:

accuracy = TP +TN
TP +TN +FP +FN

misclassification_rate = 1−accuracy = FP +FN
TP +TN +FP +FN
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•  Ideally, one would like the sum of the main diagonal be the total 
number of predictions 

•  Most of the times the algorithm will make incorrect predictions 
by predicting positive when it is negative or the opposite.

•  Based on the confusion matrix several measures have been 
proposed, for example the precision:

•  Another measure is the recall: 

  

precision = TP
TP +FP

recall = TP
TP +FN

Positive Negative
Positive True%Positive%(TP) False%Positive%(FP)
Negative False%Negative%(FN) True%Negative%(TN)

PREDICTION

REAL
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•  Intuitively, let us assume that class “positive” represents good 
candidates for a job and class “negative” bad candidates.

•  Precision tries to answer the question: out of the candidates that 
we considered good, in which percentage they were truly good?

•  Recall tries to answer the question: out of the candidates that 
are good, in which percentage we correctly detected that they 
were good?

•  Of course one would like to increase both measures at the same 
time but it can be demonstrated that there is a tradeoff 
between the two: when we increase one of the measures the 
other will decrease. 

•  These two measures are particularly useful when classes are 
imbalanced
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•  It is possible to combine precision and recall into a single metric 
called the F1 score, which can be used to compare two or more 
classifiers with different precision/recall. 

•  The F1 score is the harmonic mean of precision and recall and, 
contrary to the regular mean, it treats all values equally giving 
much more weight to low values. 

•  The F1 can vary between 0 and 1 and the score will be high if 
both recall and precision are high.

F1= 2
1

precision
+ 1
recall

=
2 x recall x precision

recall + precision



72	
  

•  Another popular measure of accuracy is Matthews correlation 
coefficient

•  A coefficient equal to 1 corresponds to a perfect classifier while 
a coefficient equal to -1 corresponds to a completely wrong 
classifier.

•  It has the advantage that can be used even when classes are 
imbalanced.

F1= TP ×TN −FP ×FN

(TP +FP )(FN +TN)(FP +TN)(TP +FN)
∈[−1,1]
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•  The confusion matrix can be extended to an arbitrary number of 
classes, e.g. we could consider three classes: positive, neutral and 
negative:

•  In these cases, the performance measurement is more complicated 
since one has to consider an explosive number of misclassification 
types. 

Positive Neutral Negative
Positive ! !
Neutral
Negative ! !

REAL

PREDICTION
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•  Still, it is possible to define measures such as precision and recall 
for each one of the different classes:

A B C D
A TP_A FN_BA FN_CA FN_DA
B FN_AB TP_B FN_CB FN_DB
C FN_AC FN_BC TP_C FN_DC
D FN_AD FN_BD FN_CD TP_D

REAL

PREDICTION

precision_A = TP _A
TP _A +FN

BA
+FN

CA
+FN

DA

recall _A = TP _A
TP _A +FN

AB
+FN

AC
+FN

AD



75	
  

DATA SPLITTING
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•  As mentioned, nonparametric models have the ability to 
approximate arbitraryfunctions but have the drawback of possibly 
overfitting the noise.

•  In the learning curve it seems obvious to choose the optimal 
complexity of the model: since it will be used for forecasting 
purposes the model should be the one which minimizes the testing 
error.
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•  The problem is that, in general, we will have no access to the 
testing set because it precisely consists on observations that we do 
not know because they still may not have happend or, at least, our 
predictions could not be tested because we do not know the value 
of the variable under study.

•  For these reasons we have to devise methods that allow us to 
approximate the testing error using just observations of the training 
dataset.

•  Most of the methods fall into what are called bootstraping, the 
bootstrap  consists on sampling along the dataset we have at hand 
and calculating some particular measure of it (a statistic

•  The mean of the measure is computed and is taken as an 
approximation to the real value.
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•  The first approach that has been proposed is to divide the trainig 
data into three components: pure training (or training set from 
now), testing set and validation set or developing set.

•  The training dataset is used just to calibrate the model 

•  The objective along this dataset would be to reduce, as much as 
possible, the training error.

•  After reaching the optimal calibration, the second set of 
observations is used to calculate the error on unseen observations.

•  If the error rate along this set is similar (formal testing could be 
employed) to the one in the training set we may conclude that 
model complexity is adequate and then to use the model in a real 
setting.

•  The error on the validation set is then calculated and it should be 
similar to the errors in the training and testing sets.
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•  If the error along the testing set is “significantly” higher than that of 
the training set this is a indicator of overfitting, the model may have 
memorized training data losing its capability of generalizing.

•  The size of the training, testing and validation sets depend on the 
availability of data.

•  Several years ago it was very common to have 60%/40% or 80%/
20% splittings in training/testing (no validation).

•  Nowadays, some applications make use of huge amounts of data 
so that 90%/5%/5% is reasonable or even 98%/1%/1%.
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•  To avoid the problem of an adverse selection of the testing set and 
to obtain a more reliable estimate of the validation error, the cross-
validation method has been proposed, based on the metioned 
idea of bootstrapping..

•  The idea is very simple: the data is splitted into k of non-
overlapping slices, k-1 of them are used for training and the 
remaining one is used to compute the testing error, then another 
set of k-1 slices are used and the testing error on the remaining 
slice is calculated, the procedure continues until all the slices have 
been used.

•  It can be demonstrated that the k-fold cross-validation error 
approaches the testing error when the number of observations 
goes to infinity.

CVE = 1
k

testing _error
j

j=1

k

∑
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….
Original*Data Training*Data Testing*Data Training*Data Testing*Data Training*Data Testing*Data Training*Data Testing*Data
Slice*1 Slice*1 Slice*1 Slice*1 Slice*1
Slice*2 Slice*2 Slice*2 Slice*2 Slice*2
Slice*3 Slice*3 Slice*3 Slice*3 Slice*3
Slice*4 Slice*4 Slice*4 Slice*4 Slice*4
Slice*5 Slice*5 Slice*5 Slice*5 Slice*5
Slice*6 Slice*6 Slice*6 Slice*6 Slice*6
Slice*7 Slice*7 Slice*7 Slice*7 Slice*7
Slice*8 Slice*8 Slice*8 Slice*8 Slice*8
Slice*9 Slice*9 Slice*9 Slice*9 Slice*9
Slice*10 Slice*10 Slice*10 Slice*10 Slice*10

ITERATION*1 ITERATION*2 ITERATION*3 ITERATION*10
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•  There is no guide for the choice of k but k=10 is a very popular 
alternative.

•  The choice of k must allow an evenly split of the data so that all the 
errors have the same value.

•  As k increases, the computational effort increases, in the limit we 
can set k equal to the number of observations n so that at each 
round n-1 examples are chosen for training and the remaining 
example is predicted.

•  This is called leave-one-out cross validation or also the jacknife. 

•  Note also that k=2 is just a “normal” splitting in training and testing 
set with reversing.

•  The choice of examples is generelly done at random but in the case 
of small samples it is crucial that examples are re shuffled and 
sampling is stratified to ensure the same proportion of observations 
of each of the classes.
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REGULARIZATION
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•  As we have mentioned, overfitting is an important problem in 
nonparametric ML models.

•  Remember that ML models try to be operational, in the sense that 
they should provide good forecasts, a model that correctly fits the 
training data but fails to generalize is NOT a good model.

•  To avoid overfitting, the complexity of the model should keep a 
balance between fitting the training data and generalizing over 
unseen examples.

•  The problem is that, by definition, we do not know how complex 
the model should be, otherwise we would not need nonparametric 
models that increase complexity depending on the problem at 
hand.
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•  Only in the case of linear models there exist some formal 
procedures to select among competing models, for example, we 
can compute the Akaike Information Criterion

Where K is the number of parameters of the model, and then select 
the model that minimizes the AIC.

•  Note, however, that even in these cases the results are asymptotical 
and also they assume strong properties on the estimated model 
(for example, that has been correctly specified).

•  Fortunately, in the context of Machine Learning, a number of 
techniques have been developed to control model complexity.

AIC(k ) = e
2K
n 1
n

(y
i
− ŷ

i
)2

i=1

n

∑
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•  For example, as we have seen before, it is possible to estimate the 
prediction error using resampling techniques such as cross-
validation.

•  The estimated error of several configurations of the algorithm, with 
varying degrees of complexity can be compared and then the 
model with the minimum expected error is selected.

•  Note that this method consist on selecting the best model among 
the group of estimated models.

•  Another possibility is to control, ex ante, the complexity of the 
model during the learning procedure.

•  In principle, this would allow us to use a “single” configuration so 
that we would not need to estimate different models reducing the 
computational burdensome.
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•  The approaches that try to control the complexity of the model 
during the learning phase are known as regularization.

•  Regularization techniques essentially consist on modifying the loss 
function to include a penalty for the complexity of the model.

•  The learning algorithm must be conveniently modified so as to 
minimize this regularized function, the resulting model will keep a 
balance between accuracy over the training examples and 
complexity, ensuring generalization.
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•  In general terms, we may think that the loss function employed 
under regularization is: 

•  Where is a λ constant that modulates the balance between fitting 
and complexity penalization.

•  When λ =0 then the models is not regularized and the loss function 
is the standard one, as λ increases the importace we give to model 
complexity increases.

•  Note that as λ  increases we reduce the model complexity, 
reducing the probability of overfitting while, as λ  decreases,  we 
increase models complexity reducing the probability of 
underfitting.

•  The norm on W is a measure of model’s complexity and, as we will 
see, there are several possible choices of it.

min
W
L(W ,X ) = 1

n
L(f (W ,x

i
),y

i
)

i=1

n

∑ + λ W
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•  An alternative view is to consider that one wants to optimize the 
model but subject to a complexity restriction (Θ):

min
W
L(W ,X ) = 1

n
L(f (W ,x

i
),y

i
)

i=1

n

∑
subject to W ≤ Θ
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•  As mentioned, there are several posible choices for the 
regularization norm

•  When it is the L2 norm we talk about ridge regression (also 
Tikhonov regularization)

•  When it is the L1 norm we talk about Lasso regression (least 
absolute shrinkage and selection operator)

min
W
L(W ,X ) = 1

n
L(f (W ,x

i
),y

i
)
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•  Even though both methods are very similar, Lasso regression has 
the advantange that it minimizes the number of effective 
parameters in the model while ridge regression just minimizes the 
size of the parameters but all of them remain active.

•  It is very easy to understand this geometrically if we consider the 
methods expressed in the form of restrictions:

min
W
L(W ,X ) = 1

n
L(f (W ,x

i
),y

i
)

i=1

n

∑
subject to W

2
≤ Θ

Ridge:

min
W
L(W ,X ) = 1

n
L(f (W ,x

i
),y

i
)

i=1

n

∑
subject to W ≤ Θ

Lasso:
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Ridge:

Lasso:

β1	
  

β2	
  
β1>0	
  
Β2>0	
  
	
  

β1	
  

β2	
  
β1=0	
  
Β2>0	
  
	
  

Θ	
  

Θ	
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•  So, ridge regression has the effect of shrinking the coefficients of 
the model but keeping all of the actitive while Lasso regression also 
shrinks the coefficients but eliminates some of them, producing 
more sparse models and also (possibly) a natural way to eliminate 
variables.

•  Regardless of the choice of the regularization method, one needs 
to modify conveniently the learning algorithm, since the loss 
function has changed.

•  One advantage of the L2 norm is that it is derivable, while L1 is not, 
nevertheless some approximations can be used to calculate the 
gradients in an effective way.
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•  Finally, there is a mixture of both  regularization methods that is 
called ElasticNet regularization.

•  In ElasticNet we use both Ridge and Lasso:

•  This kind of regularization forces both weight shrinkage and a 
global sparsity and its degree of intensity is controlled by the 
parameters λ1 and λ2.

min
W
L(W ,X ) = 1

n
L(f (W ,x
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•  Another possibility to regularize models is to employ early stopping 
which essentially consists on stopping training with the results that 
it will not allow the model to overfit.

•  Remind from the learning curve that the generalization curve  has a 
U-shape, first decreasing and then increassing with model 
complexity

•  It can be demonstrated that this pattern repeats if in the x-axis 
instead of considering the number of parameters we consider the 
training cycles because as learning progresses parameters are 
changed to increasingly fit the training data.

•  Similar to humans, machines do need time to learn and 
“memorizing”, in some sense, reduces creativity.

•  At the begining of training, most of the parameters will be small 
(not effective) and as learning progresses they will increase its value, 
early stopping is as if we had regularized the network.
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•  If we stop training at the point where the error at the last iteration 
decreased but the error at the next iteration increases (yellow dot) 
then we can be sure that model complexity is optimal.

•  For some authors early stopping provides and efficient way to 
control for complexity without the burden to modify the loss 
function and the training algorithm.

•  For some others it “mixes” the phases of learning and model 
selection and will not be as effective as a two-step procedure.
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•  The price that we have to pay is to keep track of the parameters in 
the model in the preceeding phase so that those parameters are 
used in the case that error begins to increase, instead of the actual 
ones.

•  Also, notice that we have to compute the error in the testing set at 
each iteration 

•  After the optimal model has been found one can employ the whole 
dataset (training + testing) to re-train the model.

•  Notice that this has the drawback that we do not know how many 
cycles we will have to run and whether it is better to re-start using 
another set of initial parameters or to perform some cycles with the 
actual parameters .

•  In the first case, it has been proposed to monitor the average loss 
function on the validation set, and continue training until it falls 
below the value of the training when we stopped.
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•  Other regularization methods have been also proposed, some of 
the most popular are:

•  Dropout
•  Injecting noise in the examples
•  Bagging and other ensemble methods

•  All these proposals try to correct the important problem of 
overfitting in ML models.


